Coordinated expression of Hoxa-11 and Hoxa-13 during limb muscle patterning.

نویسندگان

  • M Yamamoto
  • Y Gotoh
  • K Tamura
  • M Tanaka
  • A Kawakami
  • H Ide
  • A Kuroiwa
چکیده

The limb muscle precursor cells migrate from the somites and congregate into the dorsal and ventral muscle masses in the limb bud. Complex muscle patterns are formed by successive splitting of the muscle masses and subsequent growth and differentiation in a region-specific manner. Hox genes, known as key regulator genes of cartilage pattern formation in the limb bud, were found to be expressed in the limb muscle precursor cells. We found that HOXA-11 protein was expressed in the premyoblasts in the limb bud, but not in the somitic cells or migrating premyogenic cells in the trunk at stage 18. By stage 24, HOXA-11 expression began to decrease from the posterior halves of the muscle masses. HOXA-13 was expressed strongly in the myoblasts of the posterior part in the dorsal/ventral muscle masses and weakly in a few myoblasts of the anterior part of the dorsal muscle mass. Transplantation of the lateral plate of the presumptive wing bud to the flank induced migration of premyoblasts from somites to the graft. Under these conditions, HOXA-11 expression was induced in the migrating premyoblasts in the ectopic limb buds. Application of retinoic acid at the anterior margin of the limb bud causes duplication of the autopodal cartilage and transformation of the radius to the ulna, and at the same time induces duplication of the muscle pattern along the anteroposterior axis. Under these conditions, HOXA-13 was also induced in the anterior region of the ventral muscles in the zeugopod. These results suggest that Hoxa-11 and Hoxa-13 expression in the migrating premyoblasts is under the control of the limb mesenchyme and the polarizing signal(s). In addition, these results indicate that these Hox genes are involved in muscle patterning in the limb buds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transition of Hox expression during limb cartilage development

Hox genes belonging to the Abd-B subfamily of the HoxA and HoxD clusters play a crucial role in cartilage formation both in patterning and growth/differentiation phases during limb development. We re-examined the expression profiles of Hoxa-13, Hox-d13, Hoxa-11 and Hoxd-11 during the cartilage growth/differentiation phase of limb cartilage formation. The expression profiles of these Hox genes w...

متن کامل

The tetrapod limb: a hypothesis on its origin.

A wrist joint and structures typical of the hand, such as digits, however, are absent in [Eustenopteron] (Andrews and Westoll, '68, p 240). Great changes must have been undergone during evolution of the ankle joint; the small number of large bones in the fin must somehow have developed into a large number of small bones, and it is very difficult to draw homologies in this region, or even be cer...

متن کامل

Misexpression of Hoxa-13 induces cartilage homeotic transformation and changes cell adhesiveness in chick limb buds.

During chick limb development, the Abd-B subfamily of genes in the HoxA cluster are expressed in a region-specific manner along the proximodistal axis. To elucidate the function of Hoxa-13 that is expressed in the autopod during normal limb development, Hoxa-13 was misexpressed in the entire limb bud with a replication-competent retroviral system. Misexpression of Hoxa-13 resulted in a remarkab...

متن کامل

Hoxa-13 and Hoxd-13 play a crucial role in the patterning of the limb autopod.

Members of the Abdominal-B-related Hox gene subfamily (belonging to homology groups 9 to 13) are coordinately expressed during limb bud development. Only two genes from homology group 13 (Hoxa-13 and Hoxd-13) are specifically expressed in the developing distal region (the autopod), which displays the most complex and evolutionarily flexible pattern among limb 'segments'. We report here that tar...

متن کامل

Gdf11 is a negative regulator of chondrogenesis and myogenesis in the developing chick limb.

GDF11, a new member of the TGF-beta gene superfamily, regulates anterior/posterior patterning in the axial skeleton during mouse embryogenesis. Gdf11 null mice display skeletal abnormalities that appear to represent anterior homeotic transformations of vertebrae consistent with high levels of Gdf11 expression in the primitive streak, presomitic mesoderm, and tail bud. However, despite str...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 125 7  شماره 

صفحات  -

تاریخ انتشار 1998